[13e7c01] | 1 | from decimal import Decimal |
---|
[162f527] | 2 | from django.db.models import Q, Sum |
---|
| 3 | import finance_core.models |
---|
[13e7c01] | 4 | |
---|
[d1692e8] | 5 | def build_table_annotate(line_items, primary_field, secondary_field, primary_axis, secondary_axis, ): |
---|
[18149fd] | 6 | # Setup |
---|
| 7 | arcprimary = {} |
---|
| 8 | arcsecondary = {} |
---|
| 9 | table = [] |
---|
| 10 | zero = Decimal('0.00') |
---|
[d1692e8] | 11 | for num, (pk, label, qobj, ) in enumerate(primary_axis): |
---|
[18149fd] | 12 | arcprimary[pk] = num |
---|
| 13 | table.append([zero]*len(secondary_axis)) |
---|
[d1692e8] | 14 | for num, (pk, label, qobj, ) in enumerate(secondary_axis): |
---|
[18149fd] | 15 | arcsecondary[pk] = num |
---|
| 16 | |
---|
| 17 | def lineitem_total(obj): |
---|
| 18 | if obj['amount__sum'] is None: return zero |
---|
| 19 | else: return obj['amount__sum'] |
---|
| 20 | |
---|
| 21 | # Do the real work |
---|
| 22 | results = line_items.values(primary_field, secondary_field,).annotate(Sum('amount')) |
---|
| 23 | for result in results: |
---|
[d1692e8] | 24 | pkey = arcprimary[result[primary_field]] |
---|
| 25 | skey = arcsecondary[result[secondary_field]] |
---|
| 26 | assert table[pkey][skey] == zero |
---|
| 27 | table[pkey][skey] = lineitem_total(result) |
---|
[18149fd] | 28 | |
---|
| 29 | return table |
---|
| 30 | |
---|
[d1692e8] | 31 | def build_table_aggregate(line_items, primary_field, secondary_field, primary_axis, secondary_axis): |
---|
[13e7c01] | 32 | # This uses a simpler but probably slower method |
---|
| 33 | zero = Decimal('0.00') |
---|
| 34 | def total_amount(queryset): |
---|
| 35 | amount = queryset.aggregate(Sum('amount'))['amount__sum'] |
---|
| 36 | if amount is None: return zero |
---|
| 37 | else: return amount |
---|
| 38 | table = [ # Primary axis |
---|
| 39 | [ # Secondary axis |
---|
[162f527] | 40 | total_amount(line_items.filter(primary[2], secondary[2])) |
---|
[13e7c01] | 41 | for secondary in secondary_axis] |
---|
| 42 | for primary in primary_axis] |
---|
| 43 | |
---|
| 44 | return table |
---|
| 45 | |
---|
| 46 | build_table = build_table_annotate |
---|
[162f527] | 47 | |
---|
| 48 | |
---|
[dd2c3d9] | 49 | def get_primary_axis(slug, base_area, term, ): |
---|
[18149fd] | 50 | if slug in axes and axes[slug][3]: |
---|
[d1692e8] | 51 | return axes[slug][0:2] + (axes[slug][2](base_area, term, ), ) |
---|
[162f527] | 52 | else: |
---|
[3d00b0a] | 53 | raise NotImplementedError |
---|
[162f527] | 54 | |
---|
[dd2c3d9] | 55 | def get_secondary_axis(slug, base_area, term, ): |
---|
[18149fd] | 56 | if slug in axes and axes[slug][4]: |
---|
[d1692e8] | 57 | return axes[slug][0:2] + (axes[slug][2](base_area, term, ), ) |
---|
[162f527] | 58 | else: |
---|
| 59 | raise NotImplementedError |
---|
| 60 | |
---|
[dd2c3d9] | 61 | def get_budget_areas(base_area, term, ): |
---|
[162f527] | 62 | base_area_depth = base_area.depth |
---|
[dd2c3d9] | 63 | areas = base_area.get_descendants() |
---|
| 64 | if term: |
---|
[ee37f93] | 65 | areas = areas.filter(Q(always=True) | Q(budget_term=term)) |
---|
[162f527] | 66 | axis = [ |
---|
| 67 | ( |
---|
| 68 | area.pk, |
---|
| 69 | area.indented_name(base_area_depth), |
---|
| 70 | Q(budget_area=area), |
---|
| 71 | ) |
---|
[dd2c3d9] | 72 | for area in areas |
---|
[162f527] | 73 | ] |
---|
[d1692e8] | 74 | return axis |
---|
[162f527] | 75 | |
---|
[dd2c3d9] | 76 | def get_budget_terms(base_area, term, ): |
---|
| 77 | if term: |
---|
| 78 | terms = finance_core.models.BudgetTerm.objects.filter(pk=term.pk) |
---|
| 79 | else: |
---|
| 80 | terms = finance_core.models.BudgetTerm.objects.all() |
---|
[ca03565] | 81 | axis = [ |
---|
| 82 | ( |
---|
| 83 | term.pk, |
---|
| 84 | term.name, |
---|
| 85 | Q(budget_term=term), |
---|
| 86 | ) |
---|
| 87 | for term in terms |
---|
| 88 | ] |
---|
[d1692e8] | 89 | return axis |
---|
[ca03565] | 90 | |
---|
[dd2c3d9] | 91 | def get_layers(base_area, term, ): |
---|
[162f527] | 92 | axis = [ |
---|
| 93 | ( |
---|
| 94 | finance_core.models.layer_num(layer), |
---|
| 95 | finance_core.models.layer_name(layer), |
---|
| 96 | Q(layer=finance_core.models.layer_num(layer)), |
---|
| 97 | ) |
---|
| 98 | for layer in finance_core.models.layers |
---|
| 99 | ] |
---|
[d1692e8] | 100 | return axis |
---|
[162f527] | 101 | |
---|
[3d00b0a] | 102 | axes = { |
---|
[18149fd] | 103 | 'budget-areas': ('Budget Areas', 'budget_area', get_budget_areas, True, True, ), |
---|
| 104 | 'budget-terms': ('Budget Terms', 'budget_term', get_budget_terms, True, True, ), |
---|
[d1692e8] | 105 | 'layers': ('Layers', 'layer', get_layers, True, True, ), |
---|
[3d00b0a] | 106 | } |
---|
| 107 | |
---|
[a838ee3] | 108 | def append_totals(table): |
---|
| 109 | # Row totals |
---|
| 110 | for row in table: |
---|
| 111 | row.append(sum(row)) |
---|
| 112 | # Column totals |
---|
| 113 | if len(table) > 0: |
---|
| 114 | totalrow = [None]*len(table[0]) |
---|
| 115 | for col in xrange(len(table[0])): |
---|
| 116 | totalrow[col] = sum([row[col] for row in table]) |
---|
| 117 | table.append(totalrow) |
---|